Multi-Modal Sarcasm Detection and Humor Classification in Code-Mixed Conversations
نویسندگان
چکیده
Sarcasm detection and humor classification are inherently subtle problems, primarily due to their dependence on the contextual non-verbal information. Furthermore, existing studies in these two topics usually constrained non-English languages such as Hindi, unavailability of qualitative annotated datasets. In this work, we make major contributions considering above limitations: (1) develop a Hindi-English code-mixed dataset, MaSaC , 1 for multi-modal sarcasm conversational dialog, which our knowledge is first dataset its kind; (2) propose MSH-COMICS 2 novel attention-rich neural architecture utterance classification. We learn efficient representation utilizing hierarchical attention mechanism that attends small portion input sentence at time. Further, incorporate dialog-level leverage dialog history perform extensive experiments both tasks by varying inputs various submodules . also conduct comparative analysis against approaches. observe attains superior performance over models $>$ 1 F1-score point 10 points diagnose model thorough results understand superiority pitfalls.
منابع مشابه
investigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
Multi-modal Semantic Place Classification Multi-modal Semantic Place Classification
The ability to represent knowledge about space and its position therein is crucial for a mobile robot. To this end, topological and semantic descriptions are gaining popularity for augmenting purely metric space representations. In this paper we present a multi-modal place classification system that allows a mobile robot to identify places and recognize semantic categories in an indoor environm...
متن کاملPutting Sarcasm Detection into Context: The Effects of Class Imbalance and Manual Labelling on Supervised Machine Classification of Twitter Conversations
Sarcasm can radically alter or invert a phrase’s meaning. Sarcasm detection can therefore help improve natural language processing (NLP) tasks. The majority of prior research has modeled sarcasm detection as classification, with two important limitations: 1. Balanced datasets, when sarcasm is actually rather rare. 2. Using Twitter users’ self-declarations in the form of hashtags to label data, ...
متن کاملMulti-modal Semantic Place Classification
The ability to represent knowledge about space and its position therein is crucial for a mobile robot. To this end, topological and semantic descriptions are gaining popularity for augmenting purely metric space representations. In this paper we present a multi-modal place classification system that allows a mobile robot to identify places and recognize semantic categories in an indoor environm...
متن کاملTweet Sarcasm: Mechanism of Sarcasm Detection in Twitter
The www is growing at an alarming rate . Users have started participating actively on Internet by giving their opinions on products, services and blogs. Study and analysis of such opinions is known as Opinion Mining. But sometimes users prefer being sarcastic. Sarcasm is a linguistic phenomenon in which people state the opposite of what they actually mean. Sarcasm Detection is a challenging tas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Affective Computing
سال: 2023
ISSN: ['1949-3045', '2371-9850']
DOI: https://doi.org/10.1109/taffc.2021.3083522